• ПОМОГИТЕ ПЛЕЗ
    14 ЗАДАЧА ПРОФИЛЬНЫЙ МАТАН !!!
    В основании пирамиды SABC лежит треугольник АВС со сторонами АС = 9, ВС = 2√6,
    АВ = √105; вершина S проецируется в центр описанной окружности основания.
    а) Докажите, что точка S равноудалена от точек А, В и С.
    б) Точка Р лежит на ребре SC, точка Q – середина ребра SB, высота пирамиды SABC
    равна 10. Прямая РQ параллельна плоскости АВС. Найдите объем пирамиды SАРQ

Ответы 1

  • а) Обозначим за O - центр описанной окружности. Тогда OC=OB=OA как радиусы этой окружности. Из условия O - проекция точки S на плоскость основания, а значит ∠SOC=∠SOB=∠SOA=90°; Рассмотрим три прямоугольных треугольника: SOA, SOB, SOC: SO - их общая сторона, OA=OB=OC; Значит, они равны и, в частности, SA=SB=SC, что и требовалось.

    б) Поскольку PQ параллельна плоскости основания и лежит в одной плоскости с CB, то она параллельна CB. Так как Q - середина SB, то PQ - средняя линия треугольника SCB. Отсюда следует, что площади треугольников SPQ и SCB относятся соответственно как 1:4 (4 - квадрат коэффициента подобия)

    Теперь рассмотрим сами пирамиды. Пусть SPQ и SCB - их основания. Значит у этих пирамид относительно этого основания общая высота. Следовательно, объемы пирамид относятся как площади соответствующих оснований, т.е. 1:4.

    Заметим, что 9²+(2√6)²=(√105)², значит, треугольник ABC - прямоугольный. Объем пирамиды SABC: V=SH/3=((9*2√6)/2)*10/3=30√6

    Искомый объем в четыре раза меньше, т.е. равен (15√6)/2

    • Автор:

      ferguson
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years