• Сторона основания правильной четырехугольной пирамиды равна а. Боковая грань наклонена к плоскости основания под углом β. Определить апофему пирамиды.
    Ответ:
    a/2cosβ
    a/2tgβ
    a2sinβ
    asinβ/2
    acosβ/2

Ответы 1

  • Ответ:

    SH = a/(2Cosβ).

    Объяснение:

    Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).

    Проведем отрезок SH перпендикулярно АВ (это апофема - высота боковой грани правильной пирамиды). АН=НВ, так как боковая грань - равнобедренный треугольник. Опустим высоту SO - в правильной пирамиде основание высоты - точка пересечения диагоналей квадрата. Соединим точку О с точкой Н. Отрезок ОН перпендикулярен прямой АВ по теореме о трех перпендикулярах.

    Следовательно, угол наклона грани (эти углы у всех граней правильной пирамиды одинаковы) к плоскости основания, это угол SHO в прямоугольном треугольнике SOH.

    Косинус этого угла - отношение прилежащего катета ОН к гипотенузе SH или Cosα = OH/SH. OH = a/2 (расстояние от точки пересечения диагоналей квадрата до стороны квадрата). Тогда апофема (SH) равна:

    SH = a/(2Cosβ).

    answer img
    • Автор:

      delgado21
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years