Ответ: 45°
Объяснение:
Если боковые ребра пирамиды равнонаклонены, т.е. угол наклона к основанию всех ребер одинаков, то её высота проходит через центр описанной около основания окружности.
Пусть в пирамиде МАВС МО - высота, АВ=40 см, ВС=20 см, АС=30 см. АО=ВО=СО=R.
Полупериметр ∆ АВС=45
Найденная по формуле Герона Ѕ(АВС)=√(45•5•15•25)=75√15.
Формула радиуса описанной около треугольника окружности R=a•b•c/4S, где a,b,c - стороны треугольника, S- его площадь.
R=(20•30•40):(4•75√15)=80/√15
Формула объема пирамиды V=h•S/3 ⇒ 2000=(h•75√15):3. Решив уравнение, получим h=80/√15
В прямоугольном треугольнике АSО катеты АО=SО=80√15. ⇒ tg(SAO)=1. Угол SAO=45°
Автор:
ceferinocgatДобавить свой ответ
Предмет:
Русский языкАвтор:
kellyqbbtОтветов:
Смотреть
Предмет:
ПравоАвтор:
josafatfullerОтветов:
Смотреть
Предмет:
Русский языкАвтор:
meganrichОтветов:
Смотреть
Предмет:
Русский языкАвтор:
juniorwhxlОтветов:
Смотреть