S_{bok}=P*H;H=BB_1=d*sin \phi;AB=d*cos \phi; по теореме синусов \frac{AB}{sinC} = \frac{AC}{sinB} = \frac{BC}{sinA};\angle C=180-( \alpha + \beta );sinC=sin( \alpha + \beta ); \frac{dcos \phi }{sin( \alpha + \beta )} = \frac{AC}{sin \beta };AC= \frac{dcos \phi sin \beta }{sin( \alpha + \beta )}; \frac{dcos \phi }{sin( \alpha + \beta )} = \frac{BC}{sin \alpha };BC= \frac{dcos \phi sin \alpha }{sin( \alpha + \beta )};P=dcos \phi (1+ \frac{ sin \beta }{sin( \alpha + \beta )}+ \frac{sin \alpha }{sin( \alpha + \beta )}); S_{bok}=dcos \phi (1+ \frac{ sin \beta }{sin( \alpha + \beta )}+ \frac{sin \alpha }{sin( \alpha + \beta )})*dsin \phi;S_{bok}=d^2sin \phi cos \phi (1+ \frac{ sin \beta }{sin( \alpha + \beta )}+ \frac{sin \alpha }{sin( \alpha + \beta )}).S_{bok}= \frac{1}{2} d^2sin2 \phi(1+ \frac{ sin \beta }{sin( \alpha + \beta )}+ \frac{sin \alpha }{sin( \alpha + \beta )})