• площадь квадрата равна s a)найдите длину вписанной окружности б)длину дуги заключенной между двумя соседними точками

Ответы 1

  • Пусть сторона квадрата имеет длину х единиц. Известно, что площадь квадрата равна S. Тогда, так как площадь квадрата находится по формуле S = х^2, то сторона х = S^(1/2). а). В квадрат вписана окружность. Чтобы найти длину вписанной окружности L, необходимо определить её диаметр d. Очевидно, что d = х = S^(1/2). Получаем, L = π ∙ d = π ∙ S^(1/2). б). Окружность имеет четыре точки касания с квадратом. В силу симметричности, длина дуги заключенной между двумя соседними точками касания, будет составлять четвёртую часть длины окружности, то есть l = L/4 = (π ∙ S^(1/2))/4. в) Чтобы найти площадь части квадрата Sв, лежащей вне вписанной окружности, необходимо найти сначала площадь круга Sо. Найдём её по формуле Sо = (π ∙ d^2)/4 = (π ∙ S^(1/2)^2)/4 = π ∙ S/4, и вычтем из площади квадрата: Sв = S – Sо = S – π ∙ S/4 = S ∙ (4 – π)/4.
    • Автор:

      haiden75
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years