• Каким может быть наибольшее число сторон (необязательно выпуклого) многоугольника, у которого ровно 25 внутренних углов

Ответы 1

  • Сумма внутренних углов многоугольника, любого, равна:S = 180°(n - 2), где n - количество сторон многоугольника;Мы имеем 25 углов, каждый из которых меньше 360° и (n - 25) углов, каждый из которых меньше или равен 90°.Запишем неравенство:180°(n - 2) < 25 · 4 · 90° + 90°(n - 25);2(n - 2) < 100 + n - 25;2n - 4 < 75 + n;n < 79;n ≤ 78;Значит, наибольшее число сторон будет 78;Ответ: Наибольшее число сторон равно 78.

    • Автор:

      rolex24
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years