Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники являются равными. Доказательство: 1) Отложим угол В1А1С1 в той же плоскости с границей АС, где лежит угол ВАС таким образом, чтобы сторона А1С1 совпала со стороной АС; 2) Так как угол ВАС = углу В1А1С1, то по аксиоме откладывания угла в полуплоскость, лучи АВ и А1В1 совпадают; 3) По аксиоме единственности откладывания отрезка на луче точка В1 совпадает с точкой В, точка С совпадает с С1. Следовательно получаем, что ВС = В1С1, а АВ = А1В1 по условию теоремы, то углы и стороны треугольников АВС и А1В1С1 совпадают, значит эти треугольники равны.