• НУЖНО ОЧЕНЬ СРОЧНО! ДАЮ 50 БАЛОВ! С РИСУНКОМ!) На стороні АС трикутника АВС позначили точку М так, що кут ABM дорівнює куту ВСА. Відомо, що AB = 3 см, AC = 6 см. Знайдіть відрізок АМ.​

Ответы 1

  • Ответ:

    Мы можем использовать прямоугольный треугольник и правило сохранения углов и пропорций. Исходя из условия, угол ABM равен углу ВСА, это значит, что треугольник ABM является прямоугольным. Таким образом, мы можем использовать теорему Пифагора:

    AM^2 = AB^2 + BM^2

    Где AM - величина вектора AM, AB = 3 см, BM - величина вектора BM.

    Теперь мы можем использовать условие, что угол ABM равен углу ВСА, чтобы найти величину BM:

    BM = AC * AB / AM

    BM = 6 см * 3 см / AM

    BM = 18 см / AM

    Заменим BM в теореме Пифагора:

    AM^2 = AB^2 + (18 см / AM)^2

    AM^2 = 9 см^2 + (18 см / AM)^2

    AM^2 = 9 см^2 + 324 см^2 / AM^2

    AM^2 * (1 + 324 / AM^2) = 9 см^2 + 324 см^2 / AM^2 + 324 см^2

    AM^2 * (325 / AM^2) = 333 см^2

    AM^2 = 333 см^2 / 325

    AM = sqrt(333 см^2 / 325)

    AM = sqrt(333 см^2 / 325) = 3.56 см.

    Ответ: величина вектора AM равна 3.56 см.

    Объяснение

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years