• Даны точки М (-2;2), N (-6;5), О (-1;4). Найдите: 1) координаты векторов NM и MO 2) модули векторов NM и MO 3) координаты вектора АС= 3МО-2NM 4) скалярное произведение векторов NM и MO 5) косинус угла между векторами NM и MO

Ответы 1

  • Ответ:

    Координаты вектора NM можно найти как разность координат конечной и начальной точек:

    NM = (x_N - x_M; y_N - y_M) = (-6 - (-2); 5 - 2) = (-4; 3)

    Координаты вектора MO можно найти аналогично:

    MO = (x_O - x_M; y_O - y_M) = (-1 - (-2); 4 - 2) = (1; 2)

    Модуль вектора определяется по формуле |AB| = sqrt((x_B - x_A)^2 + (y_B - y_A)^2). Таким образом,

    |NM| = sqrt((-4)^2 + 3^2) = 5

    |MO| = sqrt(1^2 + 2^2) = sqrt(5)

    Для нахождения вектора AC необходимо вычислить 3MO и 2NM, а затем их разность:

    3MO = 3(1; 2) = (3; 6)

    2NM = 2(-4; 3) = (-8; 6)

    AC = 3MO - 2NM = (3 - (-8); 6 - 6) = (11; 0)

    Скалярное произведение двух векторов AB и CD определяется по формуле AB * CD = x_A * x_B + y_A * y_B + z_A * z_B (для трехмерного пространства). В данном случае z-координата отсутствует, поэтому формула упрощается:

    NM * MO = (-4 * 1) + (3 * 2) = 2

    Косинус угла между двумя векторами AB и CD определяется по формуле cos(theta) = (AB * CD) / (|AB| * |CD|). В данном случае:

    cos(theta) = (NM * MO) / (|NM| * |MO|) = 2 / (5 * sqrt(5)) = 2sqrt(5) / 25

    Объяснение:

    надеюсь помог

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years