• Багатокутник ABCDF описаний навколо кола з центром в точці О. Діагонал АС перетинає відрізок ОВ в точці М так, що АМ = 7 см, МС = 11 см. Знайти сторону ВС, якщо АВ= 14 см срочно ​

Ответы 1

  • Відповідь:

    За властивостями кутника, протилежні кути додатні, тому кут AFB = 360° - кут AFD - кут CFB.

    За теоремою косинусів для трикутника АBM:

    BM^2 = AM^2 + AB^2 - 2AMAB*cos(ABM)

    BM^2 = 7^2 + 14^2 - 2714cos(ABM)

    BM^2 = 245 - 196cos(ABM)

    За теоремою косинусів для трикутника СМВ:

    CV^2 = BV^2 + BC^2 - 2BVBC*cos(BVC)

    Але BV = BM, тому

    CV^2 = BM^2 + BC^2 - 2BMBCcos(BVC)

    CV^2 = 245 - 196cos(ABM) + BC^2 - 2BMBC*cos(BVC)

    За теоремою косинусів для трикутника BVC:

    cos(BVC) = (CV^2 + BV^2 - BC^2) / (2CVBV)

    Підставляємо вираз для cos(BVC) в рівняння для CV^2 та отримуємо:

    CV^2 = 245 - 196cos(ABM) + BC^2 - 2BMBC((CV^2 + BM^2 - BC^2) / (2CVBM))

    Спрощуємо вираз та розв'язуємо рівняння відносно BC^2:

    BC^2 = (245 - 196cos(ABM))CV^2 / (4BMCV - 2*CV^2)

    Підставляємо відомі значення та отримуємо:

    BC^2 = (245 - 196cos(arccos(7/14)))11^2 / (4711 - 2*11^2)

    BC^2 = 36

    Отже, сторона ВС дорівнює 6 см.

    Пояснення:

    хз

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years