• 5. Дано трикутник АКМ. Площина о, паралельна прямій АК, перетинає сторону АМ в точц В, а сторону КМ-в точці С. Знайти ВС, якщо АК=27 см, MC:CK=4:3.​

Ответы 1

  • Спочатку знайдемо довжину сторони АМ. За теоремою Піфагора для прямокутного трикутника АКМ маємо:$$AM=\sqrt{AK^2-KM^2}=\sqrt{27^2-7.2^2} \approx 23.37 \text{ см}$$Оскільки площина о паралельна стороні АМ, то відрізок ВС є подібним до відрізка КМ з коефіцієнтом подібності 3:4. Тобто:$$\frac{VC}{CK}=\frac{4}{3} \Rightarrow VC=\frac{4}{3} \cdot CK=\frac{4}{3} \cdot \frac{3}{7} \cdot AM \approx 4.66 \text{ см}$$Отже, ВС ≈ 4.66 см.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years