Ответ:
5/3 см.
Объяснение:
За теоремою Талеса, відрізок ВВ1 паралельний відрізку АА1 і ділить його у відношенні ВС:СС1.
Знайдемо спочатку довжину відрізка ВС. Оскільки С є серединою відрізка АВ, то ВС = 1/2 AB.
Застосуємо теорему Талеса до трикутника АВ1С1, де ВВ1 - перпендикуляр до площини αα, а СС1 і АА1 є перетинами площини зі сторонами трикутника:
ВС/СС1 = АВ1/В1С1
Оскільки ВС = 1/2 AB і В1С1 = СС1 - АА1 = 8 - 5 = 3 см, а також AB1 = AV + VV1 = 2AV + VС1 = 2AA1 + 2VV1, то АВ1/В1С1 = 2.
Таким чином, маємо:
1/2 AB / 8 = 2/3
AB/16 = 2/3
AB = 32/3 см
Отже, ВС = 1/2 AB = 16/3 см.
Тепер застосуємо теорему Талеса до трикутника АВ1С1, щоб знайти ВВ1:
ВВ1/АА1 = ВС/СС1
ВВ1/5 = 16/3 / 8
ВВ1 = 40/24 = 5/3 см
Отже, довжина відрізка ВВ1 дорівнює 5/3 см.
Автор:
rin tin tinyuДобавить свой ответ
Предмет:
Английский языкАвтор:
gianniОтветов:
Смотреть
Предмет:
Английский языкАвтор:
alaynariosОтветов:
Смотреть
Предмет:
ИсторияАвтор:
carolinadawsonОтветов:
Смотреть