• Высота шарового сегмента равна 1/4 диаметра шара. Найти отношение объема шарового сегмента к объему шара

Ответы 1

  • Для нахождения отношения объема шарового сегмента к объему шара, нам нужно знать формулы для объема шарового сегмента и объема шара.

    1. Объем шарового сегмента вычисляется по формуле:
    \[ V_{\text{сегмента}} = \frac{1}{6} \pi h(3r^2 + h^2) \]
    где \( r \) - радиус шара, \( h \) - высота шарового сегмента.

    2. Объем шара вычисляется по формуле:
    \[ V_{\text{шара}} = \frac{4}{3} \pi r^3 \]

    У нас дано, что высота шарового сегмента равна \( \frac{1}{4} \) диаметра шара, то есть \( h = \frac{d}{4} = \frac{2r}{4} = \frac{r}{2} \).

    Подставляем значение \( h \) в формулу для объема шарового сегмента:
    \[ V_{\text{сегмента}} = \frac{1}{6} \pi \left( \frac{r}{2} ight) \left( 3r^2 + \left( \frac{r}{2} ight)^2 ight) \]

    Упрощаем выражение и находим объем шарового сегмента.

    Теперь можем найти отношение объема шарового сегмента к объему шара:
    \[ \frac{V_{\text{сегмента}}}{V_{\text{шара}}} = \frac{\frac{1}{6} \pi \left( \frac{r}{2} ight) \left( 3r^2 + \left( \frac{r}{2} ight)^2 ight)}{\frac{4}{3} \pi r^3} \]

    Упрощаем это выражение и находим итоговый ответ.
    • Автор:

      ramiroohvx
    • 10 месяцев назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years