Сразу можно сказать, что это тело - конус. Именно конус получается при вращении прямоугольного треугольника вокруг одного из катетов. Для иллюстрации прикладываю рисунок. Теперь решаю задачу. Тут сразу возникает неоднозначность. Сказано, что острый угол в 60 градусов в прямоугольном треугольнике, но не сказано, какой. Поэтому задача имеет два решения. Я рассмотрю и первый случай, так, как у меня так нарисовано, но и второй случай, когда 60 градусам равен другой острый угол. Итак, что мы знаем?Площадь полной поверхности конуса - это площадь основания конуса + площадь боковой поверхности. S(бок) = 2пиrh, h - высота конуса, r - радиус основания конуса. S(осн) = пиr^2Нам надо знать для решения этой задачи длины высоты конуса и его радиуса. Конечно же, найдём мы их из прямоугольного треугольника ASO.cos 60 = AO/AS;cos 60 = r/81/2 = r/8r = 4 - радиус найден.В треугольнике ASO по теореме Пифагора находим другой катет - высоту конуса.h = корень из (8^2 - 4^2) = корень из 48Теперь легко находим полную поверхность конуса как сумму боковой поверхности и площади основания:S = 16пи + 8 корней из 48 * пиЕсли же <ASO = 60 градусам, то рассмотрим теперь такой вариант, совершенно аналогичный прежнему. Рассмотрим всё тот же прямоугольный треугольник ASO.Тогда <SAO = 30 градусам, а катет, лежащий против угла в 30 градусам, равен половине гипотенузы. таким образом, SO = 1/2AS = 1/2 * 8 = 4Находим радиус теперь по теореме Пифагора, он равен корню из 48, это высота конуса. Теперь площадь поверхности находится легко:S = 48пи + 8корней из 48 пи. Ответ на второй случай также получен. Задача решена.