• в треугольнике ABC AB=4 корней из 3, BC=3. площадь треугольника равна 3корня из 3. найдем высоту опущенную из вершины B если 90градусов<уголB<180градусов

Ответы 1

  • По условию 90º< угол В <180º, следовательно, этот угол тупой. Площадь треугольника можно найти половиной произведения сторон, умноженной на синус угла между ними. S ABC=AB*BC*sin∠B:2 3√3=4√3*3*sin∠B):2 1=2*sin∠B sin∠B=1/2 - это синус 30º и 150º, но по условию угол В тупой, значит, он равен 150º∠B=150ºИз вершины А проведем перпендикуляр к продолжению СВ до пересечения с ней в точке К. Треугольник АКВ - прямоугольный, угол АВК смежный с углом АВСугол АВК= 180º-150º=30º КВ противолежит углу 60º. КВ=АВ*sin 60º КВ=4√3*(√3):2=6 КС=КВ+ВС=9 АК противолежит углу 30º АК=АВ*sin30º=4√3*0,5=2√3 По т. Пифагора гипотенуза прямоугольного треугольника АКС АС²=АК²+КС²= 12+ 81=93 АС=√93=√31*√3 Площадь △АВС=АС*ВН:24√3= √31*√3*BH:2 8=√31*BH ВН=8/√31
    answer img
    • Автор:

      josiejt06
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years