В трапеции длины диагоналей равны 3 и 5, а длина отрезка, соединяющего середины оснований, равна 2. Найдите площадь трапеции
Предмет:
ГеометрияАвтор:
prancerarroyoПроводится прямая, параллельная диагонали длины 3 из вершины верхнего (малого) основания, куда приходит диагональ длины 5. Нижнее (большое) основание продолжается до пересечения с этой прямой. Получился треугольник, у которого боковые стороны 3 и 5.
Площадь этого треугольника равна площади трапеции, поскольку у них общая высота и одинаковая средняя линяя.
Легко показать простым вычислением положения концов, что медиана этого треугольника параллельна отрезку, соединяющему середины оснований, а поэтому она ему равна, то есть её длина 2.
Теперь продолжим медиану на её собственную длину 2 за основание (НЕ ЗА ВЕРШИНУ:))) и соединим с вершинами основания ТРЕУГОЛЬНИКА. Получился параллелограмм (поскольку в нем диагонали делятся пополам, этого достаточно). Ясно что его стороны 3 и 5, а одна из диагоналей 4. Рассмотрим, так сказать, "другую половину" этого параллелограма.
Легко видеть что это - прямоугольный треугольник со сторонами 3,4,5.
Его площадь 3*4/2 = 6 равна площади трапеции.
Все пояснения на рисунке
Автор:
mercedes50Добавить свой ответ
Предмет:
МатематикаАвтор:
seann5b9Ответов:
Смотреть
все четыре признака параллельности прямых
Предмет:
ГеометрияАвтор:
jamesoncrossОтветов:
Смотреть
Предмет:
ФизикаАвтор:
sebastian87Ответов:
Смотреть
Предмет:
МатематикаАвтор:
soxОтветов:
Смотреть