• Известно, что длины диагоналей трапеции равны 3 и 5. Длина отрезка, соединяющего середины ее оснований равна 2. Найдите площадь трапеции

Ответы 1

  • Проводится прямая, параллельная диагонали длины 3 из вершины верхнего (малого) основания, куда приходит диагональ длины 5. Нижнее (большое) основание продолжается до пересечения с этой прямой. Получился треугольник, у которого боковые стороны 3 и 5.

    Площадь этого треугольника равна площади трапеции, поскольку у них общая высота и одинаковая средняя линяя.

    Легко показать простым вычислением положения концов, что медиана этого треугольника параллельна отрезку, соединяющему середины оснований, а поэтому она ему равна, то есть её длина 2.

    Теперь продолжим медиану на её собственную длину 2 за основание (НЕ ЗА ВЕРШИНУ:))) и соединим с вершинами основания ТРЕУГОЛЬНИКА. Получился параллелограмм (поскольку в нем диагонали делятся пополам, этого достаточно). Ясно что его стороны 3 и 5, а одна из диагоналей 4. Рассмотрим, так сказать, "другую половину" этого параллелограма.

    Легко видеть что это  - прямоугольный треугольник со сторонами 3,4,5.

    Его площадь 3*4/2 = 6 равна площади трапеции.  

    Все пояснения на рисунке

    Это - копия моего же решения отсюда http://znanija.com/task/512727,

    а вообще я тут решал эту задачу раз 10

    answer img
    • Автор:

      tiny
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years