•  В правильной четырехугольной пирамиде сторона основания = 6см. Угол наклона боковой грани к плоскости основания = 60 градусов. Найти боковое ребро.

    №3. Основание пирамиды - треугольник со сторонами 12, 10, 10 см. Каждая боковая грань наклонена к основанию под углом в 45 градусов. Найти площадь полной поверхности пирамиды.

Ответы 1

  • 1. Апофема равна (a/2)/cos(60) = a = 6. Значит у боковой грани основание и высота равны a = 6.

    Поэтому ребро равно корень(a^2 + (a/2)^2) = a*корень(5)/2 = 3*корень(5);

    2. Проведем в основании высоту к стороне 12. получится 2 равных прямоугольных треугольника с гипотенузой 10, катетом 6 и вторым катетом 8 (опять 3,4,5).

    Отсюда площадь основания 12*8/2 = 48; периметр 22, радиус вписанной окружности 

    r= 2*S/P = 96/22 = 48/11.

    апофема равна h = r/cos(45) = (48/11)*корень(2);

    площадь боковой поверхности P*h/2 = 48*корень(2)

    Площадь полной поверхности 48*(1+корень(2))

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years