• В правильной треугольной призме АВСА1В1С1 сторона основания АВ=10, а боковое ребро АА1=√(69). Найдите расстояние от точки А до прямой ВС1.

Ответы 1

  • рисуем  призму: нижнее основание АВС, верхнее - А1В1С1. Проведем в плоскостях АА1С1С и СС1В1В диагонали АС1 и ВС1 соответственно. Рассмотрим треуг-к АВС1. Искомое расстояние будет равно длине высоты, опущенной из А к ВС1(обоз-м ч\з АО). АС1=ВС1= \sqrt{ (\sqrt{69} )^{2}+ 10^{2}}=13 . В тр-ке АВС1 применим тер-му кос-в: 169=169 -100 - 2*13*10*cosABC1 => cosABC1=5/13 => sinABC1= \sqrt{1-(5/13)^{2} } =12/13, а в тр-ке АВО sinABC1=sinABO=АО/АВ =>   AO=10*12/13= 120/13.
    • Автор:

      rachel
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years