• Через вершину квадрата АБСД (АБ= 6√2) проведен к его плоскости перпендикуляр БК, равный 4 см.
    Найдите расстояние от точки К до:

    а) Вершины Д

    б) прямых, содержащих сторону СД и диагональ АС

Ответы 1

  • квадрат АВСД, АВ=6*корень2, КВ перпендикулярна АВСД=4, АС=ВД=корень(2*АВ в квадрате)=корень(2*72)=12, ВО=ОД=1/2ВД=12/2=6, проводим КД, треугольник ВКД прямоугольный, КД=корень(ВД в квадрате+КВ в квадрате)=корень(144+16)=4*корень10, проводим КО (расстояние до АС), треугольник КВО прямоугольный, КО=корень(КВ в квадрате+ВО в квадрате)=корень(16+36)=2*корень13, КС-расстояние до СД=корень(ВС в квадрате+КВ в квадрате)=корень(72+16)=2*корень22
    • Автор:

      vidal22
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years