• На диагонали ВД прямоугольника АВСД отложены равные отрезки ВМ и ДК. а) Докажите равенство треугольников АВМ и СДК. б) Определите вид четырехугольника АМСК.

Ответы 1

  • ВМ=КД по условию задачи. ВС=СД как стороны прямоугольника. угол АВМ равен углу СДК как накрестлежащие при пересечении параллельных прямых секущей. Эти треугольника равны по двум сторонам и углу между ними. ------------Получившийся четырехугольник - параллелограмм.Четырехугольник АМСК составлен из двух треугольников. Они равны, т.к. углы при М и К равны как дополняющие до 180 градусов углы ВМА и СКD, стороны АМ=СК равны в равных треугольниках, а МК - общая сторона. Углы при М и К накрестлежащие при пересечении АМ и СК секущей, следовательно, АМ || СК, и параллельность и равенство противоположных сторон четырехугольника - признак параллелограмма. Четырехугольник АМСК будет ромбом, если исходный прямоугольник - квадрат. 
    answer img
    • Автор:

      landen242
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years