• Через концы диаметра окружности проведены 2 хорды, пересекающиеся на окружности и равные 12 см и 16 см . Найти расстояние от центра окружности до этих хорд.

Ответы 1

  • вписанный угол, опирающийся на диаметр является прямым. Имея катеты 12 и 16, найдём, что диаметр равен 20 см и радиус окружности равен 10см.

    расстояние от центра окружности является высотой к основанию в равнобедренном треугольнике с известным основанием (длина хорды) и боковой стороной (радиус окружности)

     

    можно считать по тому же пифагору = корень ( квадрат бок.стороны - квадрат половины основания )

     

    h1 = sqrt(10^2 - 6^2) = 8

    h2 = sqrt(10^2 - 8^2) = 6

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years