• Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найти радиусы вписанной в треугольник и описанной около треугольника окружностей.

Ответы 1

  • опять все просто - треугольник составлен из 2 "египетских" (точнее, ему подобных, со сторонами 9, 12 ,15, приставленных друг к другу катетами 12). 

    Поэтому высота 12, площадь 108, периметр 48, радиус вписанной окружности 2*108/48 = 9/2;

    Радиус описанной окружности можно найти по формуле R = abc/4S, это элементарно. Продолжу-ка я высоту к стороне 18 за основание до пересечения с перпендикуляром к боковой стороне, проведенным через один из концов основания. Получившийся треугольник вписанный в окружность прямоугольный треугольник, его гипотенуза - диаметр. Из подобия треугольников легко получается

    (2*R)/15  = 15/12; R = 225/24 = 75/8;

    Любопытно отметить, что 2*r = 72/8; то есть разница R - 2*r = 3/8 - очень маленькая. Эта разность равна 0 в правильном треугольнике. 

    • Автор:

      corey8hj5
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years