1)
Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис и равен расстоянию от этой точки до сторон треугольника. Биссектрисы равностороннего треугольника равны и являются медианами и высотами. Точка пересечения медиан делит их в отношении 2:1, считая от вершины. Следовательно,
радиус вписанной в равносторонний треугольник окружности равен 1/3 его высоты. Высота равна стороне, умноженной на синус угла треугольника.
и
см------- 2)
Четырехугольник можно описать около окружности тогда и только тогда, когда суммы его противоположных сторон равны. Следовательно, ВС+АD=АВ+CD.АD=2 BC⇒ BC+2ВС=7+113 ВС=18ВС=6 смAD=12 см.