* Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров. * У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.Таким образом для построения описанной окружности надо восстановить перпендикуляры к сторонам из их середин, и из точки их пересечения описать окружность. На чертежах - окружности описанные вокруг остроугольного, тупоугольного и прямоугольного треугольников