• к окружности проведены касательные MA и MB (A и B - точки касания). Найдите длину хорды AB, если радиус окружности равен 20 см, а расстояние от точки M до хорды AB равно 9

Ответы 1

  • отрезки касательных к окружности проведенные из одной точки равны и составляют равные углы с прямой проходящей через эту точку и центр окружности, значит МА=МВ.  расстояние от точки M до хорды AB равное 9 есть перпендикуляр МН к хорде АВ, угол АМН=ВМН. НА=НВ=0,5АВ. Пусть АН=НВ=х. По теореме Пифагора МА=√x^2+81, MO=9+√400-x^2. Площадь треугольника МАО равна половине произведения его катетов МА и МО а также поделив пополам произведение гипотенузы на высоту к гипотенузе MO * AН / 2. составляем и приравниваем выражения для площади:√(x^2 + 9^2) * 20 = (9 +√(20^2 - x^2)) * x

     Как икс нашли раскрываем скобки, возводим обе части в квадрат400 (x^2 + 81) = 81 x^2 + 18 x^2 sqrt(20^2 - x^2) + 400x^2 - x^4400 x^2 - 81 x^2 - 400 x^2 + x^4 + 32400 = 18 x^2 sqrt(20^2 - x^2)x^4 - 81 x^2 + 32400 = 18 x^2 sqrt(20^2 - x^2)Снова возводим в квадратx^8 - 162*x^6 + 71361*x^4 - 5248800*x^2 + 1049760000 =129600*x^4 - 324* x^6x^8 + 162 x^6 - 58239 x^4 - 5248800 x^2 + 1049760000 = 0(x^4 + 81*x^2 - 32400)^2 = 0Теперь уже решается биквадратное уравнениеt^2 + 81 t - 32400 = 0t1,2 = (-81 +- sqrt(6561 + 4*32400))/2 = (-81 + - 369)/2Отрицательный корень отбрасываемt = 144x = +- 12 Отрицательный корень снова не нужен

     

     x = 12AB =2x=24

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years