• В прямоугольном треугольнике ABC ( угол C= 90 градусов) угол А=30 градусов, AB= 4 корней из 3. Найдите радиус окружности с центром в точке А, касающейся окружности, проходящей через вершины B и С и середину гипотенузы

Ответы 1

  • Для получения ответа сначала найдем центр окружности О, для этого проведем серединные перпендикуляры из точки Е середины отрезка DB (D - середина гипотенузы DB=2√3). и середины стороны СВ=2√3 (лежит против угла в 30 градусов).

    Точка О лежит на пересечении серединных перпендикуляров. Радиус окружности ОВ найдем из треугольника ЕОВ R2=ОВ=ЕВ/cos30=√3/(√3/2) = 2. OE=1 т.к. лежит против угла в 30 градусов в тр-ке ЕОВ.

    АО = R1+R2=√[(3√3)²+1²]=√28=2√7, искомый радиус R1=АО-R2= 2√7-2 ≈ 3,3

    • Автор:

      cooper70
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years