• вершины квадрата являются центрами взаимно касающихся окружностей с радиусами по 8см. найдите радиус окружности, касающейся всех 4-х окружностей внутри квадрата.  

    варианты ответов: 1) 8(1-sqrt2) 2) 8sqrt2+1 3) 8(sqrt2+1) 4) 8sqrt2-1 5) 8(sqrt2-1) пожалуйста можно с решением! ну или чертежом.

Ответы 1

  • Чтобы между окружностями могло что-то поместиться они должны касаться друг друга попарно. Тогда сторона квадрата а = 2R = 16 см.

    В центре квадрата осталось пустое пространство, похожее на подушку.

    Диаметр вписанной в пространство окружности можно определить, как разность между диагональю квадрата и двойным радиусом окружности:

    Диагональ квадрата = а√2 = 16√2.  Диаметр окружности d = 16√2 - 16.

    Радиус r = d/2 = 8√2 - 8 = 8(√2-1). Правильный ответ - 5

    • Автор:

      laneyyouo
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years