• Две стороны параллелограмма равны 13 см и 14 см, а одна из диагоналей равна 15 см. Найдите площадь треугольника, отсекаемого от параллелограмма биссектрисой его угла.

Ответы 2

  • Об этом треугольнике - со сторонами 13,14,15 я уже много раз тут писал. 

    Если провести высоту в этом треугольнике к стороне 14, то  она разрежет исходный треугольник на два Пифагоровых треугольника - со сторонами 5,12,13 и 9,12,15. Два катета 5 и 9 в сумме составляют сторону 14, а 12 - общий катет, и есть высота. 

    Синус угла между сторонами 13 и 14 равен 12/13.

    Теперь перейдем к параллелограмму.

    У него 2 угла - острый и тупой, в сумме 180 градусов. Поэтому синусы их равны (это важнейший момент в решении) 12/13.

    Биссектриса острого угла пересечет сторону 14, разбив её на отрезки 13 и 1, то есть отсечет от параллелограмма равнобедренный треугольник с боковой стороной 13 и тупым углом при вершине, синус которого равен 12/13.

    Биссектриса тупого угла, что легко обнаружить, тоже отсесекает равнобедренный треугольник с боковой стороной 13, и острым углом между боковыми сторонами, синус которого тоже равен 12/13.

    То, что отсекаемые треугольники равнобедренные, следует из равенства углов при основаниях, поскольку один из углов является внутренним накрест лежащим углом к половине угла, из которого выходит биссектриса, а второй угол при основании - как раз и есть вторая его половина :).  

    Получается, что в обоих случаях площадь отсекаемого треугольника равна

    S = (1/2)*13^2*(12/13) = 78.

    • Автор:

      teddydbhd
    • 5 лет назад
    • 0
  • Пусть дан параллелограмм АВСD, у которого АК - биссектриса угла А.Найдем площадь треугольника АВС по формуле Герона S=84 см^2. Но с другой стороны S тр=1/2*a*b*sinB, то sinB=2*S/a*b=12/13. Значит площадь треугольника ABK=1/2*AB*BK=78 см^2

    • Автор:

      sunnyogkq
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years