В прямоугольный треугольник ABC вписана окружность, касающаяся катетов AC и BC в точках K и M соответственно. Найдите радиус окружности,описанной вокруг треугольника ABC (в см), если AK = 4,5 см, MB = 6 см.
АК=АР=4,5, т.к. отрезки касательных. Р-точка касания вписанной окружности гипотенузы.МВ=ВР=6, .к. отрезки касательных Гипотенуза АВ=4,5=6=10,5Центр описанной около прямоугольного треугольника окружности всегда лежит на середине гипотенузы, следовательно АВ=d=2*R⇒R=10,5/2=5,25