• Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

Ответы 1

  • Если рассуждать   логически то  если  точка p  лежит  внутри треугольника. То  площадь каждого треугольника в 3  раза меньше   площади ABC. Тогда  если провести высоты  из точки p на стороны  и высоты данного треугольника. То высота  треугольника   на данную сторону в 3 раза  больше маленькой высоты на   данную сторону. То  из  теоремы Фалеса  следует. Что  точка P  лежит на отрезке  паралельном  стороне треугольника   и делящем  боковые стороны в отношении 2:1   cчитая от   вершины. Другими словами  она находится в точке   пересечения отрезков  параллельных основаниям  и делящим другие стороны в   отношении 2:1 ,считая  от противолежащих вершин.НО в  целом медианы тоже cекутся как   2:1. Поэтому из   теоремы фалеса точка  p1.  Точка пересечения медиан. Что  в принципе и следовало ожидать :)Если   точка  p лежит  вне треугольника. То   из рисунка  видно  что если   S  площадь нашего  треугольника. S1-площади полученных. То2S1-S1=S    S1=S. То  есть высоты равны. Точек лежащих   вне треугольника   всегда 3  лежащих  за каждой из сторон треугольника.Точек лежащих на стыке сторон (на продолжениях высот треугольников нет тк  S=S1-2S1<0 )  Из сказанного  выше следует что для того чтобы найти эти 3 точки  достаточно провести через каждую вершину треугольника  прямую  параллельную противолежащей стороне. Точки пересечения  и дадут 3 данные точки. Таким образом  точек всегда 4.Удачи :)
    answer img
    answer img
    • Автор:

      checkers
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years