• Диагонали AC и BD выпуклого четырехугольника ABCD, площадь которого равна 28, пересекаются в точке O. Площадь треугольника AOB в 2 раза больше, чем площадь треугольника COD, а площадь треугольника BOC  в 18 раз больше, чем площадь треугольника AOD. Найти площади треугольников AOB, BOC, COD, и AOD

Ответы 1

  • Для краткости и ясности записи пусть OA = a; OB = b; OC = c; OD = d;Площадь AOB Saob = a*b*sin(Ф)/2; где Ф = ∠AOB; аналогично Sboc = b*c*sin(Ф)/2; Scod = c*d*sin(Ф)/2; Saod = a*d*sin(Ф)/2;Отсюда легко видеть, что если c*d = x; то a*b = 2*x; и если a*d = y; то c*b = 18*y; где x и y - неизвестные пока величины.Отсюда 9*y/x = c/a; и x/y = c/a; то есть (x/y)^2 = 9; x = 3*y;(или можно перемножить :) abcd = 2x^2 = 18y^2; x = 3y;)Получилось, что Scod = 3*Saod; 28 = Saod + 3*Saod + 18*Saod + 6*Saod = 28*Saod;Saod = 1; Saob = 6; Sboc = 18; Scod = 3;
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years