• Докажите что четырехугольник вершины которого середины квадрата , - квадрат. Пожалуста нужно срочно.

Ответы 1

  • Пусть в квадрате ABCD точки E,F,G,H - середины сторон AB, BC, CD, AD соответственно. Обозначим сторону квадрата за x. Тогда треугольники EBF, FCG, GDH, HAE равны, так как они прямоугольные и их катеты равны x/2. Тогда гипотенузы этих треугольников также равны, то есть, отрезки EF, FG, GH, HE равны и EFGH - ромб. Диагонали EG и FH этого ромба равны (каждая из них равна стороне квадрата), а раз в ромбе диагонали равны, то этот ромб - квадрат, что и требовалось доказать. 
    answer img
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years