• В четырехугольнике ABCD продолжения противоположных сторон AB и CD пересекаются под углом 20?; продолжения противоположных сторон BC и AD также пересекаются под углом 20?. Докажите, что два угла в этом четырехугольнике равны, а два других отличаются на 40?

Ответы 1

  • Рассмотрим получившиеся треугольники AOD и АО1В. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:<AOD=<AO1B=20° по условию;< A - общийЗначит, <ADO=<ABO1 (это углы B и D в четырехугольнике)Пусть общий для обоих треугольников AOD и АО1В угол А будет х. Выразим неизвестные углы ADO и ABO1, зная, что сумма углов треугольника равна 180°:<ADO=<ABO1=180-(<A+20)=160-<A=160-x (<D=<B=160-x)Рассмотрим четырехугольник ABCD. Зная сумму его углов, выразим угол С:<C=360-(<A+<B+<D)=360-(x+160-x+160-x)=40+х. Т.е.<C=40+<A (поскольку за х мы принимали угол А). Таким образом, мы видим, что разница между углами С и А равна 40 градусов.
    answer img
    • Автор:

      chasity
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years