• Отрезок AB пересекает плоскость альфа ,точка C - середина AB .Через точки A B C проведены паралеьные прямые пересекающие плоскость альфа в точках A₁ C₁ B₁ найдите CC₁ ,если AA₁ = 6/√2 дм и BB₁ = √2 дм (дециметр)

Ответы 1

  • РЕШЕНИЕ

    AA₁ = 6/√2 дм =3√2 дм

    BB₁ = √2 дм

    < АОА1   и  <BOB1  вертикальные  -равны

    АА1  || BB1  || CC1  - параллельные

    указанные прямые отсекают на  АВ  и А1В1  пропорциональные отрезки

    Это следствие из теоремы Фалеса о параллельных прямых пересекающих  стороны угла.

    тогда  треугольники  AOA1 ~ COC1 ~BOB1  подобные

    AO/OB=AA1/BB1=3√2 /√2 = 3 : 1

    пусть АВ=х

    тогда

    АО=3/4 х

    ОВ= х

    АС=СВ= 1/2 х

    СО= АО-АС=3/4 х - 1/2 х=3/4 х - 2/4 х=1/4 х

    теперь  снова  треугольники  AOA1 ~ COC1   подобные

    AA1/СС1= AO/СO=3/4х / 1/4х =   (3/4) / (1/4) = 3 : 1

    CC1=1/3 * AA1 = 1/3 *3√2 =√2 дм  (возможна запись  1/3 *6/√2 =  2/√2 дм  )

    Ответ   √2 дм   или  2/√2 дм 

    answer img
    • Автор:

      starr
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years