• Задано трикутника ABC і точку М поза його площиною, МА=а, МС=с, СВ=в. Знайдіть розкладання вектора МD за векторами а, в, с де точка D - середина сторони АВ.

Ответы 1

  • Тут \vec c не знадобиться. Дивись рисунок до задачі у прикріпленому файлі.За правилом трикутника додавання векторів, виразимо \vec MD через \vec a, \vec b..\vec MD=\vec MB + \vec BD = \vec b + \vec BD \\ 
\vec BD= \frac{1}{2} \vec BA= \frac{1}{2} (\vec BM + \vec MA)=\frac{1}{2} (-\vec MB+\vec MA)=\frac{1}{2} (-\vec b+\vec a)\\\vec MD= \vec b + \vec BD= \vec b + \frac{1}{2} (-\vec b+\vec a)=\vec b - \frac{1}{2} \vec b + \frac{1}{2}  \vec a=\frac{1}{2} \vec b + \frac{1}{2} \vec a=\frac{1}{2} (\vec a + \vec b)\\\vec MD = \frac{1}{2} (\vec a + \vec b)
    answer img
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years