Докажите, что биссектрисы углов произвольного параллелограмма при пересечении образуют прямоугольник. Помогите, очень нужно ><
В параллелограмме противоположные углы равны по определению.
Так как противоположные стороны параллелограмма параллельны, то сумма его внутренних односторонних углов, как углов при параллельных прямых и секущей, равна 180º.
∠ВАД+∠СВА=180º
Биссектрисы параллелограмма делят каждый его угол пополам.
Рассмотрим ∆ АВК.
∠ВАК=¹/₂ ∠ВАД
∠КВА=¹/₂∠СВА
¹/₂ ∠ВАД+¹/₂∠СВА =¹/₂ (∠ВАД+∠СВА)=180º:2=90º
Сумма углов треугольника равна 180º,⇒
∠ВКА=в180°-90°=90°
Вертикальный ему угол МКТ четырехугольника КМНТ равен ему и тоже прямой.
Аналогично доказывается, что угол МНТ равен 90º как вертикальный углу СНД,
В ∆ АМД сумма половин внутренних односторонних углов ВАД и СДА равна 90º. ⇒
Угол АМД равен 90º.
Аналогично угол ВТС =90º
Все углы четырехугольника КМНТ, образованного при пересечении биссектрис углов параллелограмма - прямые. ⇒
четырехугольник КМНТ - прямоугольник.
Автор:
tiarapollardДобавить свой ответ
Предмет:
Русский языкАвтор:
morrisonОтветов:
Смотреть
Предмет:
Русский языкАвтор:
teaganz2weОтветов:
Смотреть
Предмет:
МатематикаАвтор:
cloudessiОтветов:
Смотреть
Объясните, почему в этом отрывке много слов с корнем -зар//-зор-
*текст внутри!
Предмет:
Русский языкАвтор:
emeliaОтветов:
Смотреть