• Треугольники ADC и BDC расположены так, что точка А не лежит в плоскости BCD. Точка М - середина отрезка AD, О — точка пересечения медиан треугольника BCD. Определите положение точки пе ресечения прямой МО с плоскостью ABC.

    Помогите!!! Т_Т

Ответы 1

  • По свойству медиан точка их пересечения О делит их в  отношении 2:1, считая от вершины (свойство). 

    Медиана из D пересекает ВС в т.Е.  ВЕ=СЕ, ⇒ АЕ медиана ∆ АВС.

    МО лежит в плоскости  АЕD, которая пересекается с плоскостью АВС по прямой АЕ. 

    В ∆ АЕD точка М - середина АD,  АМ=DМ, ЕО=0,5 DО, следовательно, прямые АЕ  и МО  не параллельны и пересекутся вне плоскости ∆ ВСD в некоторой точке К, принадлежащей плоскости АВС и лежащей на продолжении медины АЕ.  

    answer img
    • Автор:

      césar48
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years