• Вершины треугольника ABC, лежат на окружности так,что сторона AC является её диаметром. Серединный перпендикуляр к стороне AB пересекает сторону AC в точке О. Вычислите длину радиуса окружности, если известно, что отношение градусных мер меньших дуг СВ и АВ равно 1:2 и периметр СВО=15см

Ответы 1

  • Если что, то О-центр окружности.

    Известно, что любой вписаный угол, который будет опираться на диаметр всегда будет прямой (90гр.), отсюда треугольник АВС-прямоугольный.

    градусная мера дуги СВА=180гр., так, как крайние точки дуги являються диаметром окружности. х-коефициент пропорцыональности, отсюда дуга СВ=1х, а дуга ВА=2х, имеем уравнение:

    1х+2х=180

    3х=180

    х=60гр.

    Значит дуга СВ=1х=1*60=60гр, дуга ВА=2х=2*60=120гр.

    Расмотрим треугольник СОВ, у него: СО=ОВ, как радиусы окружности, отсюда угол ОСВ=ОВС.

    Так, как угол СОВ опираеться на дугу СВ, то он равен дуге, отсюда он равен 60гр., отсюда у этого треугольника все углы равны по 60гр., отсюда он равносторонний, а это значит, что радиус ОВ=15/3=5см.

    Ответ:5см.

    Что то не понятно, спрашивай!

    • Автор:

      aryanna
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years