• Дано N палочек. Два игрока ходят по очереди. за один ход игрок может либо добавить в кучу 1 палочку, либо удвоить количество палочек. Выигрывает тот, кто своим ходом сделает в куче N палочек или больше (N взять свое).
    Вопрос 1: Сколько палочек может быть в куче, чтобы своим первым ходом гарантированно выиграл 1-й игрок, 2-й игрок.
    *Вопрос 2: Сколько палочек может быть в куче, чтобы 1-й игрок выиграл не первым ходом, а ровно вторым

Ответы 4

  • идут две кучки( как в примере для второго игрока), но нам нужно чтоб игрок точно победил( не важно к какой кучке это приведёт)
    • Автор:

      laceyylds
    • 5 лет назад
    • 0
  • допустим Н=10. делим на 2, чтоб узнать наименьшее кол-во камней, необходимых для выигрыша(5*2=10- выигрыш)
  • про 4: допустим, что первый игрок ходит умножением кучки на 2. палочек должно быть меньше чем N/2( ведь нам не нужно чтоб он победил) НО нам нужно, чтоб после хода 1 игрока, кол-во палочек стало >=N/2( чтобы 2 игрок победил) значит делим (N/2) на 2( ведь 1 игрок ходит умножением) . тут и получается N/4 - минимальное кол-во палочек для победы второго игрока, если первый ходит умножением
  • спасибо большое еще раз за помощь и за объяснение!:)
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years