• Напишите в словесной форме алгоритм решения следующей задачи:

    В начале года в банк на валютный счет было внесено R$, а в конце года было взято обратно W$. Еще через год на счету снова оказалось W$. Сколько процентов начисляет банк в год?

Ответы 1

  • Сначала решу математически.Если положили R $ под x% годовых, то через год сталоR1 = R*(1 + x/100) = R + R*x/100 $. Теперь забрали W $, сталоR1 - W = R - W + R*x/100Еще через год сталоR2 = (R-W+R*x/100)*(1+x/100) = R-W+2R*x/100-W*x/100+R*x^2/10000 $И по условию это равно W $.x^2*R/10000 + x*(2R - W)/100 + (R - 2W) = 0Умножаем все на 10000R*x^2 + 100*(2R - W)*x + 10000*(R - 2W) = 0И решаем квадратное уравнениеD = 10000*(2R-W)^2 - 40000*(R^2-2RW) = = 10000*(4R^2-4RW+W^2) - 10000*(4R^2 - 8RW) = 10000*(4RW + W^2)x1= \frac{-100(2R-W)-100 \sqrt{4RW+W^2} }{R} \ \textless \ 0 - не подходитx2=\frac{-100(2R-W)+100 \sqrt{4RW+W^2} }{R} - подходит1. Начало2. Ввод R и W3. X = (-100*(2*R - W) + 100*Sqrt(4*R*W + W*W) ) / R4. Вывод X5. Конец
    • Автор:

      susie
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years