• Родители научили Иру, что много есть сладкого вредно. Поэтому она решила есть не больше 8 конфет в неделю. Бабушка Ире привезла мешок с конфетами, в котором 100 конфет Красная Шапочка и 100 конфет Мишка на Севере. Ира решила выбрать 8 конфет из мешка и разложить их по дням на неделю. Ещё Ира не хочет в любой из дней оставаться без конфет. Сколькими способами она может это сделать? Порядок употребления конфет в каждый из дней не важен.

Ответы 1

  • Ответ: 7*2^8 = 1792

    Объяснение:

    Не знаю я толком как такие задачи решать, но можно попробовать следующий подход:

    Пусть, для начала Ира берет из мешка 7 конфет и раскладывает их по семи полочкам. Мы можем обозначить конфеты Красная Шапочка нулем (0), а конфеты Мишка на Севере - единицей (1). Тогда, в силу случайности процесса, после раскладки нулей и единиц по полочкам может получиться случайное двоичное число. Всего возможных комбинаций - семизначных двоичных чисел может быть 2^7 (два в седьмой степени) - это вытекает из определения семизначного двоичного числа.

    Теперь добавляем в рассмотрение восьмую конфету, Красную Шапочку (КШ). Ее можно положить на любую из семи полочек. Каждое новое расположение КШ даст 2^7 комбинаций остальных семи конфет. Таким образом получаем 7*2^7 комбинаций. Еще столько же комбинаций даст восьмая конфета Мишка на Севере (МН). Таким образом, всего комбинаций будет 2*7*2^7 = 7*2^8 = 7*256 = 1792.

    • Автор:

      adelaide
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years