• Предлагается некоторая операция над двумя произвольными трехзначными десятичными числами: Записывается результат сложения старших разрядов этих чисел. К нему дописывается результат сложения средних разрядов по такому правилу: если он меньше первой суммы, то полученное число приписывается к первому слева, иначе – справа. Итоговое число получают приписыванием справа к числу, полученному после второго шага, сумму значений младших разрядов исходных чисел. Какое из перечисленных чисел могло быть построено по этому правилу? 1) 141215 2)121514 3)141519 4)112112

Ответы 1

  • Ответ:

    2)121514

    Объяснение:

    Предположим, у нас такие два числа: abc и xyz.  

    Сумма старших разрядов: a+x

    Сумма средних разрядов: b+y

    Сумма младших разрядов: c+z

    При этом сумма двух разрядов не может быть больше 18, так как максимальная цифра в 10-ной системе счисления 9, то максимальная сумма двух цифр = 9+9=18.

    т.е мы сразу исключаем вариант 3 и 4 т.к. в них присутствуют суммы разрядов 19 и 21, а такого быть не может.

    Также есть условие

    К нему дописывается результат сложения средних разрядов по такому правилу: если он меньше первой суммы, то полученное число приписывается к первому слева, иначе – справа.

    То есть получается, что две первые суммы разрядов записаны в порядке возрастания, а по такому условию, из двух оставшихся подходит только вариант 2

    • Автор:

      bree
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years