• наименьшее общее кратное, d наибольший общий делитель натуральных чисел х и у, удовлетворяющих условию 7x=16y-73. Какое наименьшее значение может принимать выражение q деленное на d ?

Ответы 1

  • Т.к. d=НОД(x,y), то x=du, y=dv, где u,v - уже взаимно простые натуральные числа. Тогда q=duv, и значит, q/d=uv. То есть нам надо минимизировать uv.По условию: 16dv-7du=73. Выносим  d за скобки:d(16v-7u)=73, т.е d - делитель числа 73, откуда возможно только d=1  или d=73 (т.к. 73 - простое).1) Если d=1, то  16v-7u=73. Все натуральные решения этого уравнения задаются формулами u=1+16k, v=5+7k, k=0,1,2,...Минимум uv достигается при k=0, т.е. uv=5. При этом x=u=1, y=v=5.2) Если d=73, то  16v-7u=1. Все натуральные решения этого уравнения задаются формулами u=9+16k, v=4+7k, k=0,1,2,...Минимум uv достигается при k=0, т.е. uv=4*9=36. При этом x=73*9, y=73*4.Т.к. 5<36, то минимум q/d равен 5 и достигается при x=1, y=5.
    • Автор:

      cael
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years