• докажите что произведение любых трех последовательных натуральных чисел делится на 6

Ответы 2

  • Если взять три любых последовательных числа, то одно из них обязательно будет чётным, то есть, делится на два, а другое обязательно будет делиться на три. Теперь, каким бы не было третье число, произведение всех трёх чисел всегда будет кратно 6. Если же из этих трёх чисел чётное число само и является кратным 3, то это число автоматически делится на 6, поскольку оно кратно и 2 и 3 одновременно. Произведение такого числа на два рядом стоящих тоже будет кратно 6.
    • Автор:

      deon
    • 5 лет назад
    • 0
  • 3 последовательных натуральных числа: n, n+1, n+2Из 3-х последовательных чисел одно будет четным, т.е. делится на 2, и одно будет делится на 3. Значит их произведение будет делится на 2*3 =6.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years