• найти определенный интеграл dx/(2-sqrt(1+x)), a=0; b=-3/4. Я решила у меня получается ответ (5\3), решила на онлайн калькуляторе там получается ln(81/16)-1 помогите пожалуйста,как будет правильно)))

Ответы 1

  • У меня так получается:\int\limits^{0}_{-0.75} { \frac{dx}{2- \sqrt{1+x}}} \ =\int\limits^{0}_{-0.75} {-2 \sqrt{1+x}* \frac{d(2-\sqrt{1+x})}{2- \sqrt{1+x}}} \ Сделаем замену:2-\sqrt{1+x}=t\sqrt{1+x}=2-t\int\limits^{0}_{-0.75} {-2 \sqrt{1+x}* \frac{d(2-\sqrt{1+x})}{2- \sqrt{1+x}}} \ =\int\limits^{0}_{-0.75} {(-2*(2-t)* \frac{dt}{t}) \ =-2*\int\limits^{0}_{-0.75} {\frac{2-t}{t} \ dt=-2*(\int\limits^{0}_{-0.75} {\frac{2}{t} \ dt-\int\limits^{0}_{-0.75} {1} \ dt)=-2*(2ln|t|-t)=-4ln|t|+2tВернемся к замене:-4ln|2-\sqrt{1+x}|+2*(2-\sqrt{1+x})|^{0}_{-0.75}=-4ln|2-\sqrt{1+0}|+2*(2-\sqrt{1+0})+4ln|2-\sqrt{1-0.75}|-2*(2-\sqrt{1-0.75})-4ln|1|+2*(2-1)+4ln|2-0.5|-2*(2-0.5)=2+4ln(1.5)-3=-1+4ln(1.5)=ln(1.5^{4})-1=ln(\frac{3^{4}}{2^{4}})-1=ln(\frac{81}{16})-1
    • Автор:

      izabella
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years