уравнение касательной проведенной к графику функции y=f(x) в точке с абсциссой x=x₀ имеет следующий вид:y=f(x₀)+f '(x₀)(x-x₀)сначала найдем производную y'=f '(x)y=3x-x³ ⇒ y' =f '(x) =3-3x²поскольку x₀=0 ⇒f '(x₀)= f '(0)=3-3*0²=3-0=3f(x₀)=f(0)=3*0-3*0²=0получим: y=f(x₀)+f '(x₀)(x-x₀)=0+3(x-0)=3xy=3x будет уравнение касательной проведенной к графику функции y=3x-x³ в точке с абсциссой x₀=0 имеет следующий вид: