• В ряд выложены 2013 черных и 2013 красных шаров, причём самый левый и самый правый шары чёрные. Всегда ли можно выбрать слева подряд несколько шаров (но не все!) так, чтобы среди них количество красных равнялось количеству чёрных?

Ответы 4

  • Ответ будет "ДА"? или "НЕТ"
    • Автор:

      rock53
    • 5 лет назад
    • 0
  • в решении же написано.
    • Автор:

      peck
    • 5 лет назад
    • 0
  • ответ: ДА
  • Пусть f(k) - разность между количеством красных и черных шаров среди первых  k левых шаров. Тогда f(1)=0-1=-1, т.к. первый шар черный и f(2013+2012)=2013-2012=1 т.к. последний шар тоже черный. Т.к. f(k+1)=f(k)±1, то f(k) пробегает все целые значения между любыми двумя своими значениями, а значит при каком-то k функция f(k) примет значение 0 (т.к. при первом и предпоследнем k она имеет значения разных знаков: -1 и 1). А это и значит, что при каком-то k количество красных и черных будет одинаковым.P.S. Можно сказать, что здесь мы применили дискретный аналог теоремы о том, что непрерывная функция имеет корень на интервале, если на его концах у функции разные знаки.
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years