График функции у = х² - 6х - 5 - это парабола ветвями вверх (коэффициент при х² положителен).Вершина параболы, представленной в виде у = ах² + вх + с находится из выражения х = -в / 2а = -(-6) / 2*1 = 3, у = 3² - 6*3 - 5 = 9 - 18 - 5 = -14.Производная функции равна y' = 2x - 6.Приравняв производную нулю, найдём критическую точку:2х - 6 = 0х = 6 / 2 = 3 - это подтверждает ранее найденное значение вершины.Для заданной параболы - это минимум функции.1. проміжок спадання функції -∞ < x < 3.2. множину розв'язків нерівності x² - 6x + 5 ≤ 0 определим, приравняв функцию нулю:x² - 6x + 5 = 0Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-6)^2-4*1*(-5)=36-4*(-5)=36-(-4*5)=36-(-20)=36+20=56;Дискриминант больше 0, уравнение имеет 2 корня:x₁=(√56-(-6))/(2*1)=(√56+6)/2=√56/2+6/2=√56/2+3 ≈ 6.74165738677394;x₂=(-√56--6))/(2*1)=-56+6)/2=-56/2+6/2= -56/2+3 ≈ -0.74165738677394.Ответ: -0.74165738677394 < x < 6.74165738677394Более подробное решение дано в приложении.