• Сколько корней уравнения sin3x+|sinx|=sin2x принадлежащие промежутку [0;2π).

Ответы 1

  • 1) sin x ≥ 0 => |sin x| = sin x =>sin3x + sinx - sin2x = 02sin2xcosx - sin2x = 0sin2x(2cosx - 1) = 0sin2x = 0 или cosx= \frac{1}{2} x=πk или x= \pm  \frac{ \pi }{3}+2 \pi k x= \frac{ \pi k}{2} C учетом условия sinx > 0 получим x=πk, x=π/2 + 2πk, x=π/3+2πk, k∈ZНа промежутке [0; 2π) 4 корня: x=0; x=π/3; x=π/2; x=π.2) sin x < 0 => |sin x| = -sin x =>sin3x - sinx - sin2x = 02sin2xsinx - sin2x = 0sin2x(2sinx - 1) = 0sin2x = 0 или sinx= \frac{1}{2} - не удовл. условию sin x < 0x=πn x= \frac{ \pi n}{2} C учетом условия sinx < 0 получим x=-π/2 + 2πn, n∈ZНа промежутке [0; 2π) 1 корень: x=3π/2.Ответ: 0; π/3; π/2; π; 3π/2.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years